52 research outputs found

    Soft drinks and sweeteners intake: Possible contribution to the development of metabolic syndrome and cardiovascular diseases. Beneficial or detrimental action of alternative sweeteners?

    Get PDF
    Abstract The rapid increase in obesity, metabolic syndrome, and cardiovascular diseases (CVDs) has been related to the rise in sugar-added foods and sweetened beverages consumption. An interesting approach has been to replace sugar with alternative sweeteners (AS), due to their impact on public health. Preclinical and clinical studies, which analyze the safety of AS intake, are still limited. Major pathogenic mechanisms of these substances include ROS and AGEs formation. Indeed, endothelial dysfunction involving in the pathogenesis of micro- and macro-vascular diseases is mitochondrial dysfunction dependent. Hyperglycemia and endoplasmic reticulum stress together produce ROS, contributing to the development and progression of cardiovascular complications during type 2 diabetes (T2D), thus causing oxidative changes and direct damage of lipids, proteins, and DNA. Epidemiological studies in healthy subjects have suggested that the consumption of artificial AS can promote CV complications, such as glucose intolerance and predisposition to the onset of T2D, whereas natural AS could reduce hyperglycemia, improve lipid metabolism and have antioxidant effects. Long-term prospective clinical randomized studies are needed to evaluate precisely whether exposure to alternative sugars can have clinical implications on natural history and clinical outcomes, especially in children or during the gestational period through breast milk

    Heart failure: Pilot transcriptomic analysis of cardiac tissue by RNA-sequencing

    Get PDF
    Background: Despite left ventricular (LV) dysfunction contributing to mortality in chronic heart failure (HF), the molecular mechanisms of LV failure continues to remain poorly understood and myocardial biomarkers have yet to be identified. The aim of this pilot study was to investigate specific transcriptome changes occurring in cardiac tissues of patients with HF compared to healthy condition patients to improve diagnosis and possible treatment of affected subjects. Methods: Unlike other studies, only dilated cardiomyopathy (DCM) (n = 2) and restrictive cardiomyopathy (RCM) (n = 2) patients who did not report family history of the disease were selected with the aim of obtaining a homogeneous population for the study. The transcriptome of all patients were studied by RNA-sequencing (RNA-Seq) and the read counts were adequately filtered and normalized using a recently developed user-friendly tool for RNA-Seq data analysis, based on a new graphical user interface (RNA-SeqGUI). Results: By using this approach in a pairwise comparison with healthy donors, we were able to identify DCM- and RCM-specific expression signatures for protein-coding genes as well as for long noncoding RNAs (lncRNAs). Differential expression of 5 genes encoding different members of the mediator complex was disclosed in this analysis. Interestingly, a significant alteration was found for genes which had never been associated with HF until now, and 27 lncRNA/mRNA pairs that were significantly altered in HF patients. Conclusions: The present findings revealed specific expression pattern of both protein-coding and lncRNAs in HF patients, confirming that new LV myocardial biomarkers could be reliably identified using Next-Generation Sequencing-based approaches

    De novo DNA methylation induced by circulating extracellular vesicles from acute coronary syndrome patients

    Get PDF
    DNA methylation is associated with gene silencing, but its clinical role in cardiovascular diseases (CVDs) remains to be elucidated. We hypothesized that extracellular vesicles (EVs) may carry epigenetic changes, showing themselves as a potentially valuable non-invasive diagnostic liquid biopsy. We isolated and characterized circulating EVs of acute coronary syndrome (ACS) patients and assessed their role on DNA methylation in epigenetic modifications

    Evidence of key role of Cdk2 overexpression in pemphigus vulgaris

    Get PDF
    The pathogenesis of pemphigus vulgaris (PV) is still poorly understood. Autoantibodies present in PV patients can promote detrimental effects by triggering altered transduction of signals, which results in a final acantholysis. To investigate mechanisms involved in PV, cultured keratinocytes were treated with PV serum. PV sera were able to promote the cell cycle progression, inducing the accumulation of cyclin-dependent kinase 2 (Cdk2). Microarray analysis on keratinocytes detected that PV serum induced important changes in genes coding for one and the same proteins with known biological functions involved in PV disease (560 differentially expressed genes were identified). Then, we used two different approaches to investigate the role of Cdk2. First, small interfering RNA depletion of Cdk2 prevented cell-cell detachment induced by PV sera. Second, pharmacological inhibition of Cdk2 activity through roscovitine prevented blister formation and acantholysis in the mouse model of the disease. In vivo PV serum was found to alter multiple different pathways by microarray analysis (1463 differentially expressed genes were identified). Major changes in gene expression induced by roscovitine were studied through comparison of effects of PV serum alone and in association with roscovitine. The most significantly enriched pathways were cell communication, gap junction, focal adhesion, adherens junction, and tight junction. Our data indicate that major Cdk2-dependent multiple gene regulatory events are present in PV. This alteration may influence the evolution of PV and its therapy. © 2008 by The American Society for Biochemistry and Molecular Biology, Inc

    Association Between Circulating CD4+ T Cell Methylation Signatures of Network-Oriented SOCS3 Gene and Hemodynamics in Patients Suffering Pulmonary Arterial Hypertension

    Get PDF
    Pathogenic DNA methylation changes may be involved in pulmonary arterial hypertension (PAH) onset and its progression, but there is no data on potential associations with patient-derived hemodynamic parameters. The reduced representation bisulfite sequencing (RRBS) platform identified N= 631 differentially methylated CpG sites which annotated to N= 408 genes (DMGs) in circulating CD4(+) T cells isolated from PAH patients vs. healthy controls (CTRLs). A promoter-restricted network analysis established the PAH subnetwork that included 5 hub DMGs (SOCS3, GNAS, ITGAL, NCOR2, NFIC) and 5 non-hub DMGs (NR4A2, GRM2, PGK1, STMN1, LIMS2). The functional analysis revealed that the SOCS3 gene was the most recurrent among the top ten significant pathways enriching the PAH subnetwork, including the growth hormone receptor and the interleukin-6 signaling. Correlation analysis showed that the promoter methylation levels of each network-oriented DMG were associated individually with hemodynamic parameters. In particular, SOCS3 hypomethylation was negatively associated with right atrial pressure (RAP) and positively associated with cardiac index (CI) (vertical bar r vertical bar >= 0.6). A significant upregulation of the SOCS3, ITGAL, NFIC, NCOR2, and PGK1 mRNA levels (qRT-PCR) in peripheral blood mononuclear cells from PAH patients vs. CTRLs was found (P <= 0.05). By immunoblotting, a significant upregulation of the SOCS3 protein was confirmed in PAH patients vs. CTRLs (P < 0.01). This is the first network-oriented study which integrates circulating CD4(+) T cell DNA methylation signatures, hemodynamic parameters, and validation experiments in PAH patients at first diagnosis or early follow-up. Our data suggests that SOCS3 gene might be involved in PAH pathogenesis and serve as potential prognostic biomarker

    Renal function impairment predicts mortality in patients with chronic heart failure treated with resynchronization therapy

    Get PDF
    Background: The use of cardiac resynchronization therapy (CRT) and implantable cardioverter- defibrillator (ICD) for advanced heart failure (HF) is increasing. Renal dysfunction is a common condition in HF which is associated with a worse survival. The study aims at identifying in patients with advanced HF treated with CRT the effect of baseline glomerular filtration rate (GFR), GFR improvement and left ventricular ejection fraction (LVEF) change, after 6-months of CRT implant, on survival. Methods: The study population consisted of 375 advanced HF patients who received a CRT between 1999 and 2009, of these 277 received also an ICD implant. Clinical characteristics (New York Heart Association [NYHA] functional class, ischemic vs. non-ischemic etiology, atrial fibrillation, diabetes, hypertension, LVEF, QRS duration and GFR were recorded. The use of common used drugs was evaluated. Cox proportional hazards analysis was calculated in order to evaluate variables associated to mortality. Results: During a median follow-up of 43.0 months, 93 (24.8%) patients died. Patients deceased during the study had at baseline higher NYHA class and lower LVEF and GFR. In Cox regression analysis, GFR predicts long-term mortality (hazard ratio [HR] 0.983; 95% confidence interval [CI] 0.969–0.998; p = 0.023) independently from the effect of others covariates. In addition, a positive GFR improvement 6 months after CRT implant is significantly associated with a lower hazard of mortality (for each 10 mL/min of GFR improvement HR 0.86; 95% CI 0.75–0.99; p = 0.038). Conclusions: GFR is a significant predictor of mortality in advanced HF patients who received CRT. A GFR improvement 6 months after CRT implant is significantly associated with a lower hazard of mortality.

    Seroprevalence of Bartonella henselae in patients awaiting heart transplant in Southern Italy

    Get PDF
    Background Bartonella henselae is the etiologic agent of cat-scratch disease. B. henselae infections are responsible for a widening spectrum of human diseases, although often symptomless, ranging from self-limited to life-threatening and show different courses and organ involvement due to the balance between host and pathogen. The role of the host immune response to B. henselae is critical in preventing progression to systemic disease. Indeed in immunocompromised patients, such as solid organ transplant patients, B. henselae results in severe disseminated disease and pathologic vasoproliferation. The purpose of this study was to determine the seroprevalence of B. henselae in patients awaiting heart transplant compared to healthy individuals enrolled in the Regional Reference Laboratory of Transplant Immunology of Second University of Naples. Methods Serum samples of 38 patients awaiting heart transplant in comparison to 50 healthy donors were examined using immunfluorescence assay. Results We found a B. henselae significant antibody positivity rate of 21% in patients awaiting heart transplant ( p = 0.002). There was a positive rate of 8% ( p > 0.05) for immunoglobulin (Ig)M and a significant value of 13% ( p = 0.02) for IgG, whereas controls were negative both for IgM and IgG antibodies against B. henselae . The differences in comorbidity between cases and controls were statistically different (1.41 ± 0.96 vs 0.42 ± 0.32; p = 0.001). Conclusions Although this study was conducted in a small number of patients, we suggest that the identification of these bacteria should be included as a routine screening analysis in pretransplant patients

    the novel role of epigenetics in primary prevention of cardiovascular diseases

    Get PDF
    A great deal of evidences indicate that impaired fetal growth and in utero exposure to risk factors, especially maternal hypercholesterolemia, may be relevant for human pathophysiological signs of atherosclerosis and subsequent development of cardiovascular disease (CVD) during different life stages. Despite the underlying mechanisms of fetal programming are still unknown, epigenetics has been suggested as one of the possible explanations for the associations between intrauterine risk factors and CVD development. Indeed, a lot of translational studies support the hypothesis that epigenetic changes are related to increased CVD risk although it is still not possible to establish a direct causality in humans. Notably, epigenetic modifications can be reversible through therapeutic approaches employing histone deacetylase inhibitors, histone acetyltransferase inhibitors and commonly used drugs like statins. Thus, the whole comprehension of these mechanisms will provide in the next future the rationale for the development of novel tools to be used in the primary prevention and therapy of CVD

    Hybrid 18F-FDG-PET/MRI Measurement of Standardized Uptake Value Coupled with Yin Yang 1 Signature in Metastatic Breast Cancer. A Preliminary Study

    No full text
    Detection of breast cancer (BC) metastasis at the early stage is important for the assessment of BC progression status. Image analysis represents a valuable tool for the management of oncological patients. Our preliminary study combined imaging parameters from hybrid 18F-FDG-PET/MRI and the expression level of the transcriptional factor Yin Yang 1 (YY1) for the detection of early metastases

    Basic Pathogenic Mechanisms and Epigenetic Players Promoted by Extracellular Vesicles in Vascular Damage

    No full text
    Both progression from the early pathogenic events to clinically manifest cardiovascular diseases (CVD) and cancer impact the integrity of the vascular system. Pathological vascular modifications are affected by interplay between endothelial cells and their microenvironment. Soluble factors, extracellular matrix molecules and extracellular vesicles (EVs) are emerging determinants of this network that trigger specific signals in target cells. EVs have gained attention as package of molecules with epigenetic reversible activity causing functional vascular changes, but their mechanisms are not well understood. Valuable insights have been provided by recent clinical studies, including the investigation of EVs as potential biomarkers of these diseases. In this paper, we review the role and the mechanism of exosomal epigenetic molecules during the vascular remodeling in coronary heart disease as well as in cancer-associated neoangiogenesis
    • …
    corecore